
FORMULATION OF THE BOUNDARY-VALUE
PROBLEMS OF LONGITUDINAL MIXING OF
PARTICLES IN CIRCULATING FLUIDIZED BEDS
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The boundary conditions for the boundary-value problems of longitudinal mixing of particles are substantiated
within the framework of circulation and diffusion models. These conditions account for the influence of the
bottom fluidized bed on the process of mixing.

As is well known, the longitudinal mixing of particles in a circulating fluidized bed is of great importance in
the formation of the temperature and concentration fields in the system. In this connection, the simulation of solid-
phase mixing has attracted a considerable amount of attention from researchers [1–5]. In [5], a rather universal model
of mixing is suggested, which accounts for the basic features of the process: the ascending motion of particles in the
core of the bed and the descending motion near its walls, the change in the concentration of the particles over the
riser height, and the presence of an unusual kind of "dynamic" gas distributor, i.e., bottom fluidized bed. The latter is
the principal distinctive feature of this model. As has been shown in [5], this model is capable of describing satisfac-
torily the experimental curves of mixing in both the bed core and the circular zone in the case of the appropriate se-
lection of the mass-exchange coefficient β∗ . In setting the boundary-value problems of longitudinal mixing considered
in [5] with allowance for the bottom fluidized bed, use has been made of nonstandard boundary conditions formulated
on an intuitive basis without the necessary substantiation. Quite a rigorous derivation of the boundary conditions is
needed for subsequent use in computational practice.

The system of equations which describes the longitudinal mixing of particles in the circulating fluidized bed
within the framework of the two-band circulation model has the following form [5]:

for the bed core

∂Aρ1c1

∂t
 + u1 

∂Aρ1c1

∂x
 = β∗  ρ (c2 − c1) − Aρ1 β1c1 ; (1)

for the circular zone

∂Bρ2c2

∂t
 − u2 

∂Bρ2c2

∂x
 = β∗  ρ (c1 − c2) + Aρ1 β1c1 . (2)

In formulating the boundary-value problem, we used the following boundary conditions:

x = H ,   c1 = c2 = c ;

x = H0 ,   ρfbH0 
∂c1

∂t
 + Aρ1u1c1 − Bρ2u2c2 = 





0 ,

Jsc (t − ∆t, H) ,
     

t ≤ T ,

t > T .

(3)

Let us consider the derivation of these conditions.
1. x = H. We write the balance of the fluxes of labeled particles in the zone of emergence from a lifting

riser:
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Aρ1u1c1 − Bρ2u2c2 = Jsc . (4)

Taking into account the equality Js = Aρ1u1 − Bρ2u2, which expresses the balance of the fluxes of all the particles in
the horizontal section of the riser, from Eq. (4) we can easily obtain the equation

AB (c1 − c2) (ρ1u1 + ρ2u2) = 0 , (5)

which immediately yields the boundary condition for x = H in Eq. (3).
2. x = H0. To obtain the necessary condition we consider the following conjugate problem. For 0 ≤ x < H0:

∂A
bρ1

b
c1

b

∂t
 + u1

b
 
∂A

bρ1
b
c1

b

∂x
 = 

∂
∂x

 



A

bρ1
b
D1

b
 
∂c1

b

∂x




 + β∗

b
 ρb

 (c2
b
 − c1

b) − A
bρ1

b
 β1

b
c1

b
 , (6)

∂B
bρ2

b
c2

b

∂t
 − u2

b
 
∂B

bρ2
b
c2

b

∂x
 = 

∂
∂x

 



B

bρ2
b
D2

b
 
∂c2

b

∂x




 + β∗

b
 ρb

 (c1
b
 − c2

b) + A
bρ1

b
 β1

b
c1

b
 . (7)

In the domain H0 < x ≤ H, the process of mixing is described by Eqs. (1) and (2). The boundary conditions for system
(1), (2), (6), and (7) are as follows:

x = H ,   c1 = c2 = c ; (8)

x = H0 ,   Aρ1u1c1 = A
bρ1

b
u1

b
c1

b
 − A

bρ1
b
D1

b
 
∂c1

b

∂x
 ; (9)

Bρ2u2c2 = B
bρ2

b
u2

b
c2

b
 + B

bρ2
2
D2

b
 
∂c2

b

∂x
 ; (10)

x = 0 ,   A
bρ1

b
u1

b
c1

b
 − A

bρ1
b
D1

b
 
∂c1

b

∂x
 − B

bρ2
b
u2

b
c2

b
 − B

bρ2
b
D2

b
 
∂c2

b

∂x
 = 





0 ,

Jsc (t − ∆t, H) ,
     

t ≤ T ,

t > T . (11)

We integrate Eqs. (6) and (7) for x going from 0 to H0 and then combine the derived equations:

H0 
∂
∂t

 A
bρ1

b
c1

b
______

 + B
bρ2

b
c2

b
______


  + A

bρ1
b
u1

b
c1

b
 H0

 −  B
bρ2

b
u2

b
c2

b
 H0

 =

= 



A

bρ1
b
D1

b
 
∂c1

b

∂x



 H0

 + 



B

bρ2
b
D2

b
 
∂c2

b

∂x



 H0

 + A
bρ1

b
u1

b
c1

b
 0

 −  B
bρ2

b
u2

b
c2

b
 0

 − 



A

bρ1
b
D1

b
 
∂c1

b

∂x



 0

 − 



B

bρ2
b
D2

b
 
∂c2

b

∂x



 0

 . (12)

With account for Eqs. (9)–(11) relation (12) takes the form

H0 
∂
∂t

 A
bρ1

b
c1

b
______

 + B
bρ2

b
c2

b
______


  + 


Aρ1u1c1 H0

 − 

Bρ2u2c2 H0

 = 




0 ,

Jsc (t − ∆t, H) ,
     

t ≤ T ,

t > T .
(13)

It will be taken into consideration that the bottom fluidized bed is a system with virtually ideal mixing of particles;
consequently,
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ρ1
b
 C ρ2

b
 = ρfb ,   c1

b
 C c2

b
 = cfb . (14)

Then

∂
∂t

 A
bρ1

b
c1

b
______

 + B
bρ2

b
c2

b
______


  = ρfb 

dcfb

dt
 . (15)

It is easy to show that cfb = c1 H0
. Since in the system of ideal mixing there are no fluxes, we have

     lim
D1

b
,β∗ →∞

   D1
b
 
∂c1

b

∂x
 =     lim

D2

b
,β∗ →∞

   D2
b
 
∂c2

b

∂x
 = 0 . (16)

In this case, the two conjugation conditions (9) and (10) will change to one condition:

Aρ1u1c1 = A
bρfbufbcfb , (17)

where ufb is the effective velocity of escape of the particles from the bottom fluidized bed (ufb = ρ1u1
 ⁄ ρfb). Taking

account of the relation

Aρ1u1 = A
bρfbufb , (17à)

expressing the balance of the particle fluxes for x  = H0 from Eq. (17) it follows that∗) :

cfb = c1 H0
 . (18)

Finally, using Eqs. (15) and (18), from Eq. (13) we obtain boundary condition (3) (postulated in [5]) for x =
H0.

We point out here an important particular case of system (1)–(3), i.e., a nonflow fluidized bed where Js = 0,
H0 = 0, ρ1 = ρ2 = ρfb, and Au1 = Bu2. Equations (1)–(3) yield

A 
∂c1

∂t
 + Au1 

∂c1

∂x
 = β∗  (c2 − c1) , (19)

B 
∂c2

∂t
 − Bu2 

∂c2

∂x
 = β∗  (c1 − c2) (20)

with the boundary conditions

c1 = c2 ,   x = 0 ,   x = H . (21)

In [6], system (19)–(21) was used to simulate the longitudinal mixing of particles in the fluidized bed.
Let us consider the formulation of correct boundary conditions for the one-band diffusion model which is the

limiting case of circulation model (1) and (2) for

u1 ,   u2 → ∞ ;   β∗  → ∞;   lim 
ABρ1 ρ2

ρ2
 
u1u2

β∗
 = E < ∞  [5] .

∗)  The quantity c2 on the boundary x = H0 undergoes a jump, which is attributed to the fact that the descending flux
of labeled particles with a concentration c2 arrives at the region of the bottom fluidized bed with a concentration cfb
not having a direct cause-and-effect relation to the concentration c2.
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It should be noted that the diffusion model of the process, because of its extraordinary simplicity, is widely used in
practice [1, 2, 7–10].

Within the framework of the diffusion model, we consider the conjugate problem

ρ 
∂c
∂t

 + Js 
∂c

∂x
 = 

∂
∂x

 



ρE 

∂c

∂x




 ,   H0 < x ≤ H ; (22)

ρb
 
∂c

b

∂t
 + Js 

∂c
b

∂x
 = 

∂
∂x

 



ρb

E
b
 
∂c

b

∂x




 ,   0 ≤ x < H , (23)

with the boundary conditions

x = H ,   
∂c

∂x
 = 0 ; (24)

x = H0 ,   Jsc − ρE 
∂c

∂x
 = Jsc

b
 − ρb

E
b
 
∂c

b

∂x
 ; (25)

x = 0 ,   Jsc
b
 − ρb

E
b
 
∂c

b

∂x
 = 











0 ,

Jsc (t − ∆t, H) ,
     

t ≤ ∆t
∗)

 ,

t > ∆t .
(26)

As is well known, conditions (24) and (26) for x = H, 0 are called in the literature the Danckwerts conditions [11].
Having integrated Eq. (23) for x going from 0 to H0, we have

H0 
∂
∂t

 ρb
c

b
____

 + Js (c
b
  H0

 − c
b 0) = 




ρb

E
b
 
∂c

b

∂x



 H0

 − 



ρb

E
b
 
∂c

b

∂x



 0

 . (27)

Using boundary condition (26) and conjugation condition (25), from Eq. (27) we obtain

H0 
∂
∂t

 ρb
c

b
____

 + Jsc  H0
 − 




ρE 

∂c

∂x



 H0

 = 




0 ,

Jsc (t − ∆t, H) ,
     

t ≤ ∆t ,

t > ∆t .
(28)

In the case of ideal mixing of particles in the bottom fluidized bed we have

∂
∂t

 ρb
c

b
____

 = ρfb  
dcfb

dt
 .

(29)

Conjugation condition (25) will have the form

Jsc − ρE 
∂c

∂x
 = ρfbufb

∗
cfb = Jscfb , (30)

where ufb
∗)  = Js

 ⁄ ρfb.
The sought boundary condition for Eq. (22) at x = H0 follows from Eq. (28) with account for Eqs. (29) and (30):

H0 ρfb 




∂c
∂t

 − 
ρE
Js

 
∂2

c

∂t∂x




 + Jsc − ρE 

∂c

∂x
 = 





0 ,

Jsc (t − ∆t, H),
     

t ≤ ∆t ,

t > ∆t .
(31)

∗)  For the diffusion model we have ∆tr = 0 and ∆t = T.
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Expression (31) derived can be called a generalized Danckwerts condition. It changes to a classical
Danckwerts condition when H0 = 0, and to condition (26) when x = 0. Because of the cause- and-effect relation be-
tween the quantities cfb and c H0

, their difference will be a slowly varying time function; therefore, in conformity with
Eq. (30) it might be expected that the term with the second derivative in Eq. (31) is relatively small and, conse-
quently, will not considerably affect the final result.

In closing, it should be noted that boundary conditions (3) and (31) obtained from an analysis of the corre-
sponding conjugate problems reflect the influence of the bottom fluidized bed on the process of mixing of particles
and can justifiably be used in computational practice for solving different boundary-value problems which take into ac-
count the longitudinal mixing of particles in lifting risers of circulating fluidized beds.

NOTATION

A and B, portions of the horizontal riser section occupied by the ascending and descending particles (the bed
core and the circular zone); c1 and c2, dimensionless concentrations of the labeled particles; c  = Ac1 + Bc2, mean con-

centration; D1, D2, and E, coefficients of longitudinal dispersion; H, riser height; H0, height of the bottom fluidized

bed; Js, mass circulation flux of particles; t, time; ∆t, recirculation time (from the exit of the labeled particles from the

upper part of the riser to the entry into its base); ∆tr, time in which the particles in the bed core traverse the portion

from x = H0 to x = H; T = ∆t + ∆tr, circulation period; u1 and u2, velocities of the particles; x, vertical coordinate;

β1 = − 
u1

Aρ1
 
∂Aρ1

∂x
; ρ1 and ρ2, bed densities; ρ = Aρ1 + Bρ2, mean density of the bed. Subscripts: 1, bed core; 2, cir-

cular zone; fb, fluidized bed near the gas distributor; s, particle; r, riser. Superscripts: b, lower band of the circulating
fluidized bed.
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